skip to main content


Search for: All records

Creators/Authors contains: "Matthews, Elisabeth C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report on the discovery and characterization of three planets orbiting the F8 star HD 28109, which sits comfortably in ${TESS}$’s continuous viewing zone. The two outer planets have periods of $\rm 56.0067 \pm 0.0003~d$ and $\rm 84.2597_{-0.0008}^{+0.0010}~d$, which implies a period ratio very close to that of the first-order 3:2 mean motion resonance, exciting transit timing variations (TTVs) of up to $\rm 60\, min$. These two planets were first identified by ${TESS}$, and we identified a third planet in the ${TESS}$photometry with a period of $\rm 22.8911 \pm 0.0004~d$. We confirm the planetary nature of all three planetary candidates using ground-based photometry from Hazelwood, ${ASTEP}$, and LCO, including a full detection of the $\rm \sim 9\, h$ transit of HD 28109 c from Antarctica. The radii of the three planets are ${\it R}_b=2.199_{-0.10}^{+0.098} ~{\rm R}_{\oplus }$, ${\it R}_c=4.23\pm 0.11~ {\rm R}_{\oplus }$, and ${\it R}_d=3.25\pm 0.11 ~{\rm R}_{\oplus }$; we characterize their masses using TTVs and precise radial velocities from ESPRESSO and HARPS, and find them to be ${\it M}_b=18.5_{-7.6}^{+9.1}~M_{\oplus }$, ${\it M}_c=7.9_{-3.0}^{+4.2}~{\rm M}_{\oplus }$, and ${\it M}_d=5.7_{-2.1}^{+2.7}~{\rm M}_{\oplus }$, making planet b a dense, massive planet while c and d are both underdense. We also demonstrate that the two outer planets are ripe for atmospheric characterization using transmission spectroscopy, especially given their position in the CVZ of James Webb Space Telescope. The data obtained to date are consistent with resonant (librating) and non-resonant (circulating) solutions; additional observations will show whether the pair is actually locked in resonance or just near-resonant.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (8731+108au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained betweenlogLbol/L= −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Abstract

    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b isa<20MJupwidely separated (∼8″,a= 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)